skip to main content


Search for: All records

Creators/Authors contains: "Provelengios, George"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this article, we present and evaluate a true random number generator (TRNG) design that is compatible with the restrictions imposed by cloud-based Field Programmable Gate Array (FPGA) providers such as Amazon Web Services (AWS) EC2 F1. Because cloud FPGA providers disallow the ring oscillator circuits that conventionally generate TRNG entropy, our design is oscillator-free and uses clock jitter as its entropy source. The clock jitter is harvested with a time-to-digital converter (TDC) and a controllable delay line that is continuously tuned to compensate for process, voltage, and temperature variations. After describing the design, we present and validate a stochastic model that conservatively quantifies its worst-case entropy. We deploy and model the design in the cloud on 60 EC2 F1 FPGA instances to ensure sufficient randomness is captured. TRNG entropy is further validated using NIST test suites, and experiments are performed to understand how the TRNG responds to on-die power attacks that disturb the FPGA supply voltage in the vicinity of the TRNG. After introducing and validating our basic TRNG design, we introduce and validate a new variant that uses four instances of a linkable sampling module to increase the entropy per sample and improve throughput. The new variant improves throughput by 250% at a modest 17% increase in CLB count. 
    more » « less
  2. This article presents a study of two types of on-chip FPGA voltage sensors based on ring oscillators (ROs) and time-to-digital converter (TDCs), respectively. It has previously been shown that these sensors are often used to extract side-channel information from FPGAs without physical access. The performance of the sensors is evaluated in the presence of circuits that deliberately waste power, resulting in localized voltage drops. The effects of FPGA power supply features and sensor sensitivity in detecting voltage drops in an FPGA power distribution network (PDN) are evaluated for Xilinx Artix-7, Zynq 7000, and Zynq UltraScale+ FPGAs. We show that both sensor types are able to detect supply voltage drops, and that their measurements are consistent with each other. Our findings show that TDC-based sensors are more sensitive and can detect voltage drops that are shorter in duration, while RO sensors are easier to implement because calibration is not required. Furthermore, we present a new time-interleaved TDC design that sweeps the sensor phase. The new sensor generates data that can reconstruct voltage transients on the order of tens of picoseconds. 
    more » « less
  3. Recent research has exposed a number of security issues related to the use of FPGAs in embedded system and cloud computing environments. Circuits that deliberately waste power can be carefully crafted by a malicious cloud FPGA user and deployed to cause denial-of-service and fault injection attacks. The main defense strategy used by FPGA cloud services involves checking user-submitted designs for circuit structures that are known to aggressively consume power. Unfortunately, this approach is limited by an attacker’s ability to conceive new designs that defeat existing checkers. In this work, our contributions are twofold. We evaluate a variety of circuit power wasting techniques that typically are not flagged by design rule checks imposed by FPGA cloud computing vendors. The efficiencies of five power wasting circuits, including our new design, are evaluated in terms of power consumed per logic resource. We then show that the source of voltage attacks based on power wasters can be identified. Our monitoring approach localizes the attack and suppresses the clock signal for the target region within 21 μs, which is fast enough to stop an attack before it causes a board reset. All experiments are performed using a state-of-the-art Intel Stratix 10 FPGA. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    In this paper we present and evaluate a true random number generator (TRNG) design that is compatible with the restrictions imposed by cloud-based FPGA providers such as Amazon Web Services (AWS) EC2 F1. Because cloud FPGA providers disallow the ring oscillator circuits that conventionally generate TRNG entropy, our design is oscillator-free and uses clock jitter as its entropy source. The clock jitter is harvested with a time-to-digital converter (TDC) and a controllable delay line that is continuously tuned to compensate for process, voltage, and temperature variations. After describing the design, we present and validate a stochastic model that conservatively quantifies its worst-case entropy. We deploy and model the design in the cloud on 60 EC2 F1 FPGA instances to ensure sufficient randomness is captured. TRNG entropy is further validated using NIST test suites, and experiments are performed to understand how the TRNG responds to on-die power attacks that disturb the FPGA supply voltage in the vicinity of the TRNG. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)